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Calculations of the second-harmonic susceptibility tensor �abc�−2� ;� ,�� are presented for bulk semi-
conductors within both the v ·A and the r ·E gauges. The description of the semiconductor states incorporates
the “scissors” Hamiltonian commonly used to obtain the correct band gap. The nonlocality of the scissors
correction leads to terms in �abc�−2� ;� ,�� not considered before within a sum-over-states approach to
the v ·A gauge. Using this expression, we show that the results of the two gauges give the same result for
�abc�−2� ;� ,��, within very good numerical accuracy. As part of the derivation, we clarify the well-known
result for the linear optical response which states that the scissors correction rigidly shifts the spectrum along
the energy axis, keeping the line-shape intact. The calculation is presented for GaAs using an all-electron
scheme and a pseudopotential scheme.
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I. INTRODUCTION

The development of nonlinear optical materials is an
active area of research, with works ranging from the study
and growth of nonlinear crystals to the design of metamate-
rials. Perhaps the simplest nonlinear process, second-
harmonic generation �SHG�, is one of the most important
for the generation of frequencies, as a spectroscopic probe,
and because its reverse process—spontaneous parametric
downconversion, which is described by the same nonlinear
susceptibility—can be used to generate entangled photons
for application in quantum information processing.

The numerical calculation of any nonlinear optical re-
sponse is a nontrivial task, and different methodologies and
numerical approaches have been employed. Our interest is in
strategies that can be applied to study the nonlinear optical
response of a material over a wide frequency range, and in a
regime where a perturbative treatment is appropriate. The
first attempt along these lines is the work of Butcher and
McLean,1 where the resulting equations appeared to be
plagued by divergences that appear in the dc �static� limit.
Aspnes2 showed that in the static limit these divergences are
only apparent, in that the coefficients that multiply the diver-
gent terms vanish; but his proof was limited to cubic crystals.
Ghahramani et al.,3 gave a more general proof of the disap-
pearance of these apparent divergence for cold �T=0 K�,
undoped semiconductors of any crystal class. Levine,4 pre-
sented a formula for the nonlinear second-order susceptibil-
ity tensor where the scissors approximation is properly intro-
duced, but the expressions are difficult to compute. These
studies used what is sometimes called the “velocity gauge”
or “v ·A gauge” for the treatment of the coupling of an elec-
tron to the electromagnetic field, where v is the velocity op-
erator of the electron and A is the vector potential specifying
the electromagnetic field. Later, Aversa and Sipe5 showed
that a divergence free expression for the nonlinear second-
order susceptibility tensor �abc�−2� ;� ,�� could be more
easily obtained using what is sometimes called the “length
gauge” or “r ·E formulation.” Here r is the position operator
and E is the electric field.

In the works of Rashkeev et al.,6 and Hughes and
Sipe,7 the length-gauge formulation was used to evaluate
�abc�−2� ;� ,�� for several zinc-blende semiconductors
within an ab initio scheme. The more recent work of
Leitsmann et al.,8 extends the velocity-gauge approach to
include excitonic and local field interactions in GaAs. Qua-
siparticle effects, at the scissors correction level, have been
correctly incorporated by Nastos et al.9 in the length-gauge
approach, and before this Adolph and Bechstedt10 discussed
how to include these effects, even beyond the scissors
approximation, within the velocity-gauge approach. Surface
second-harmonic generation has also been studied within
the velocity-gauge scheme with good success,11–13 and
�abc�−2� ;� ,�� spectra have been calculated for superlat-
tices within both the length-gauge approach14 and the
velocity-gauge approach.3

However, a full comparison between calculations using
these two different approaches has not been done. One goal
of this paper is to establish the equivalence between the
length-gauge and velocity-gauge schemes. Of course, it is
well known that measurable quantities must be gauge invari-
ant, and indeed we show in this paper that the expressions
for �abc�−2� ;� ,�� from the two different approaches give
the same result. In order to do so, we derive a expression for
�abc�−2� ;� ,�� within the velocity gauge that properly takes
into account the nonlocal nature of the scissors Hamiltonian.
In all previous calculations of �abc�−2� ;� ,�� within the ve-
locity gauge, the scissors implementation was carried out by
following its implementation for linear optical response. We
show that this naïve procedure, of shifting the conduction
energies and renormalizes the velocity matrix elements,
which works for the linear response, does not work at all
for the nonlinear response. The expression we derive for
�abc�−2� ;� ,�� contains two terms directly obtained from
the scissors Hamiltonian that are clearly required to obtain
gauge invariance within the scissors implementation. Earlier,
Nastos et al.9 showed the correct way of calculating
�abc�−2� ;� ,�� using the scissors Hamiltonian within the
length gauge, and in the present paper we can identify a
unified approach to the calculation of �abc�−2� ;� ,��, with
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and without the scissors correction, that gives the same result
for the velocity gauge and length gauge. While we can verify
this analytically for linear response,5 for the SHG response
coefficient we can only confirm it numerically. Nonetheless,
with this confidence acquired our approach can serve as a
model for the gauge-invariant calculation of other nonlinear
optical response coefficients.

The paper is organized as follows. In Sec. II we present
the most important steps involved in the derivation of
second-order susceptibility tensor �abc�−2� ;� ,��, within
the length-gauge and velocity-gauge approaches. In Sec.
III we show the results of the numerical evaluation of
�abc�−2� ;� ,��, taking as an example the zinc-blende bulk
semiconductor GaAs, and discuss them. We calculate the ex-
pressions for �abc�−2� ;� ,�� with ab initio programs based
on density-functional theory �DFT� within the local-density
approximation �LDA�, using all-electron and pseudopotential
schemes. Finally, in Sec. IV we present our conclusions.

II. THEORY

In this section we present the strategy used to calculate
the second-order nonlinear response. Although this has al-
ready been discussed in earlier studies, we consider both the
velocity-gauge and the length-gauge responses within a com-
mon formalism. Our derivation includes terms not included
before in the velocity gauge, for both the linear and the non-
linear responses. For the nonlinear response, the terms are
crucial for establishing numerically that both gauges give the
same result, as they must.

A. Perturbation approach

We use the independent particle approximation and ne-
glect local field and excitonic effects and treat the electro-
magnetic field classically, while the matter is described quan-
tum mechanically. We can describe the system using a scaled
one-electron density operator �, with which we can calculate
the expectation value of a single-particle observable O as
�O�=Tr��O�, with O the associated quantum-mechanical
operator and Tr the trace. The density operator satisfies
i��d� /dt�= �H�t� ,��, with H�t� as the total single-electron
Hamiltonian, written as

H�t� = H0 + HI�t� ,

where H0 is the unperturbed time-independent Hamiltonian,
and HI�t� is the time-dependent potential energy due to the
interaction of the electron with the electromagnetic field; H0
has eigenvalues ��n�k� and eigenstates �nk� �Bloch states�
labeled by a band index n and crystal momentum k. To pro-
ceed with the solution of � it is convenient to use the inter-
action picture, where a unitary operator U=exp�iH0t /��
transforms any operator O into Õ=UOU†. Even if O does

not depend on t, Õ does through the explicit time depen-
dence of U. The dynamical equation for �̃ is given by

i�
d�̃

dt
= �H̃I�t�, �̃�

with solution

i��̃�t� = i��̃0 + �
−�

t

dt��H̃I�t��, �̃�t��� , �1�

where �̃0= �̃�t=−�� is the unperturbed density matrix. We
look for the standard perturbation series solution, �̃�t�= �̃�0�

+ �̃�1�+ �̃�2�+¯, where the superscript denotes the order
�power� with which each term depends on the perturbation
HI�t�. From Eq. �1� the Nth order term is

�̃�N��t� =
1

i�
�

−�

t

dt��H̃I�t��, �̃�N−1��t��� . �2�

The series is generated by the unperturbed density operator
�̃�0�	 �̃0, assumed to be the diagonal Fermi-Dirac distribu-
tion, �nk��̃0�nk�= f���n�k��	 fn. For a clean, cold semicon-
ductor fn=1 for n a valence �v� or occupied band and zero
for n a conduction �c� or empty band. This we assume
throughout. We remark that the expectation values satisfy

�O�=Tr��O�=Tr��̃Õ�.
We first look for the expectation value of the macroscopic

current density, J, given by

�J� =
e

�
Tr��ṙ� , �3�

where ṙ is the time derivative of the position operator of the
electron of charge e,

v 	 ṙ =
1

i�
�r,H� �4�

with v the velocity operator of the electron, and � is the
normalization volume. We calculate the macroscopic polar-
ization density P, related to �J� by �J�=dP /dt. For a perturb-
ing �Maxwell macroscopic� electromagnetic field, E�t�
=E���e−i�̃t+c.c., where �̃=�+ i� and �	0 is used to adia-
batically turn on the interaction, we write the second-order
nonlinear polarization as,

Pa�2��2�� = �abc�− 2�;�,��Eb���Ec��� , �5�

where �abc�−2� ;� ,�� is the nonlinear susceptibility respon-
sible of SHG. The superscripts in Eq. �5� denote Cartesian
components, and if repeated are to be summed over. Without
loss of generality we can always define �abc�−2� ;� ,�� to
satisfy intrinsic permutation symmetry, �abc�−2� ;� ,��
=�acb�−2� ;� ,��; if it did not, the part that did not satisfy
intrinsic permutation symmetric would make no contribution
to the second-order polarization. This part could be dropped
since it would have no physical significance.

The unperturbed Hamiltonian is given by

H0 =
p2

2me
+ V�r� �6�

with me the mass of the electron, p its canonical momentum,
and V�r� is the local periodic crystal potential, where we
neglect spin-orbit terms. This Hamiltonian is used to solve
the Kohn-Sham equations15 of DFT, for convenience usually
within the LDA. As is well known, the use of these solutions
as single particle states leads to an underestimation of the
band gap. A standard procedure to correct for this is to use
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the so-called “scissors approximation,” by which one rigidly
shifts the conduction bands in energy so that the band gap
corresponds to the accepted experimental band gap; this is
often in fairly good agreement with the GW band gap based
on a more sophisticated calculation.16 Concurrently, one uses
the LDA wave functions, since they produce band structures
with dispersion relations similar to those predicted by the
GW approximation. Mathematically, one adds the scissors
�nonlocal� term S�r ,p�, to the unperturbed or unscissored
Hamiltonian H0, i.e.,

H0
S = H0 + S�r,p� ,

where

S�r,p� = �


n
� d3k�1 − fn��nk��nk� , �7�

with �
 the rigid �k-independent� energy correction to be
applied. Several properties of S�r ,p� are shown in the appen-
dix. The unscissored and scissored Hamiltonians satisfy

H0�nk�r� = ��n�k��nk�r� ,

H0
S�nk�r� = ��n

S�k��nk�r� ,

where

�n
S�k� = �n�k� + �1 − fn�
 , �8�

and �nk�r�= �r �nk� is the coordinate representation of the ket
�nk�. We emphasize that the scissored Hamiltonian has the
same eigenfunctions as the unscissored Hamiltonian.

B. Velocity gauge formalism

To calculate the optical response in the velocity gauge, we
use the minimal substitution through which, in the presence
of an electromagnetic field, the Hamiltonian is written as

HS =
1

2me
�p −

e

c
A�2

+ V�r� + S�r,p −
e

c
A� , �9�

where A is the vector potential; one obtains the magnetic

field as B=��A and the electric field as E=−�1 /c�Ȧ, with
c the speed of light in vacuum. In general these electric and
magnetic fields are taken to be the macroscopic Maxwell
fields. We assume the long-wavelength limit, in which A is
uniform and only depends on time. Furthermore, we take a
harmonic perturbation of the form A�t�=A���e−i�̃t

+A����ei�̃�t, where only the “positive frequency” term will
be kept in the following, because that term will contribute to
the positive frequency part of the linear and second-
harmonic responses. Expanding the scissors operator accord-
ing to,9

S�r,p −
e

c
A� = S�r,p� +

e

c

i

�
A · �r,S�r,p��

+
1

2!
� e

c

i

�
�2

A · r,�A · r,S�r,p��� + ¯ ,

leads to the following scissored Hamiltonian up to second
order in A:

HS = H0
S + HI,1 + HI,2,

where

HI,1 = −
e

c
A · v, �10�

HI,2 = −
ie2

2�c2 �rb,vS,c�AbAc +
e2

2mec
2A2 �11�

are the linear and nonlinear �second-order� interaction
Hamiltonians. The e2A2 / �2mec

2� term is only a function of
time contributing to a global phase factor to the electron
wave function that has no effect on expectation values, so it
can be dropped. We have defined

vS = −
i

�
�r,S�r,p�� �12�

as the contribution to the velocity operator due to the nonlo-
cal scissors term, and

v =
p

me
+ vS, �13�

as the scissored velocity operator. From Eq. �4� the current
operator j=eṙ, up to second order in A, is

ja = j0
a + j1

a + j2
a,

with

j0
a = ev,a,

j1
a = −

e2

cme
Aa +

ie2

�c
�ra,vS,b�Ab,

j2
a = −

e3

2�2c2 �ra,�rb,vS,c��AbAc,

operators of zero, first and second orders in A, respectively.
From Eq. �3�,

�J�1�a� =
1

�
Tr�j0

a��1�� +
1

�
Tr�j1

a��0�� , �14�

is the linear macroscopic current density and

�J�2�a� =
1

�
Tr�j0

a��2�� +
1

�
Tr�j1

a��1�� +
1

�
Tr�j2

a��0�� , �15�

is the nonlinear �second-order� macroscopic current density.

1. Linear response

We calculate the linear response, within the velocity
gauge, and show that there is a term not previously included
when the scissored Hamiltonian is used. Indeed, we show
that by coincidence the “usual” way of including the scissor
correction leads to the correct result. That is, the scissors
correction only gives a rigid shift in the energy axis of the
unscissored spectrum by an amount equal to 
; the line
shape of the spectrum is the same for both the scissored and
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the unscissored Hamiltonians.9,17–19 In the following, we
show that if the usual procedure is used for the nonlinear
response the resulting scissored susceptibility is wrong. The
derivation of the linear response here is important for making
sense of our later results, and also sets some of the interme-
diate results that will be used in the calculation of the non-
linear response. In passing, we also show that the linear re-
sponse is gauge invariant, since we obtain the same analytic
result for the linear susceptibility in both gauges. This agree-
ment holds with and without the scissors correction.

We start by taking matrix elements of Eq. �2� to obtain

�̃mn
�1��t� =

ei

�c
�

−�

t

dt�Ab�t��

�

�ṽm�
,b�t���̃�n

�0��t�� − �̃m�
�0�

��t��ṽ�n
,b�t��� ,

where the sum over � is over all states, and we have used Eq.

�10�. Since U�t�=exp�iH0
St /��, we get ṽm�

,b�t��=vm�
,bei�m�

S t�,
�̃�n

0 �t��= f���n, and �m�
S =�m

S �k�−��
S�k�, where we have omit-

ted the dependence on k from the already crowded notation.

Then �̃mn
�1��t�=�mn

�1�ei�mn
S te−i�̃t, with

�mn
�1��t� =

e

�c

vmn
,bfnm

�mn
S − �̃

Ab��� , �16�

where fnm= fn− fm. Using Tr���0�� /�=n0, with n0 the elec-
tronic density, and dP /dt= �J� to write Pa���= �i / �̃��Ja����
=�ab�−� ;��Eb���, we get from Eq. �14� that

�ab�− �;�� =
e2

��̃2� d3k

8�3 

m�n

vnm
,avmn

,bfnm

�mn
S − �̃

−
e2n0

me�̃
2�ab

+
ie2

��̃2

1

�
Tr���0�Fab�

=
e2

�
� d3k

8�3 

m�n

fnmvnm
,avmn

,b

�� 1

��mn
S �2��mn

S − �̃�
+

1

��mn
S �2�̃

+
1

�mn
S �̃2�

−
e2n0

me�̃
2�ab +

ie2

��̃2

1

�
Tr���0�Fab� , �17�

is the linear susceptibility within the scissored Hamiltonian;
we used a partial fraction expansion in the first term after the
first equal sign. We have defined

Fab = �ra,vS,b� , �18�

used the fact that the fnm factor allow us to write m�n and
that in the continuous limit of k �1 /��
k→�d3k / �8�3�.

From time reversal symmetry we have that vmn
S �−k�

=−vnm
S �k� and �mn

S �−k�=�mn
S �k� with which it follows that

the contribution to �ab�−� ;�� coming from the 1 / �̃ cancels
out. By simple subindex manipulation, the third term, com-
bined with the fourth term in the right-hand side of Eq. �17�,
gives

e2

�
� d3k

8�3 

m�n

fn
vnm

,avmn
,b + vmn

,avnm
,b

�mn
S −

e2n0

me
�ab 	 �ab.

�19�

The last term on the right-hand side of Eq. �17� reduces to

ie2

�
� d3k

8�3

n

fnFnn
ab 	 �ab �20�

where

Fnn
ab = i
 


m��n�
fnm�rnm

a rmn
b + rnm

b rmn
a � , �21�

summing m over all v and c states different from n �see the
appendix�. Finally, Eq. �17� reduces to

�ab�− �;�� =
e2

�
� d3k

8�3 

m�n

vnm
,avmn

,bfnm

��mn
S �2��mn

S − �̃�
+

�ab

�̃2 +
�ab

�̃2 ,

�22�

which is the linear-response coefficient obtained within the
velocity gauge, including the scissors correction. Using

vnm
 =

�nm
S

�nm
vnm �n � m� , �23�

and �mn
S =�mn− fmn
, from the appendix we get that

�ab�− �;�� =
e2

�
� d3k

8�3 

m�n

fnmvnm
a vmn

b

�mn
2 ��mn

S − �̃�

−
e2

�̃2� d3k

8�3

n

fn� 1

mn
��ab

, �24�

where �1 /mn
��ab is the effective mass tensor given in Eq.

�A12�.
For a clean, cold semiconductor fn= fn�k�=1 or 0, inde-

pendent of k and the integration over the Brillouin zone of
the term involving the effective-mass tensor vanishes
identically,3 which implies that

�ab�− �;�� =
e2

�
� d3k

8�3 

m�n

fnmvnm
a vmn

b

�mn
2 ��mn

S − � − i��
, �25�

where the energy denominator leads to resonances when
�mn

S =�.
A similar calculation neglecting the scissors term in the

Hamiltonian leads to

�unscissored
ab �− �;�� =

e2

�
� d3k

8�3 

m�n

fnmvnm
a vmn

b

�mn
2 ��mn − � − i��

,

where now the resonances are at �mn=�. A naïve procedure
to “scissors” above result would be to take

�naïve
ab �− �;�� =

e2

�
� d3k

8�3 

m�n

fnmvnm
,avmn

,b

��mn
S �2��mn

S − � − i��
,

�26�

an incorrect strategy, since it misses the second and third
important terms on the right-hand side of Eq. �22�. However,
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using Eq. �23� in Eq. �26� leads by coincidence to the correct
result of Eq. �25�. It appears that this point has not been
appreciated in the literature; Eq. �22� shows the correct way
to include the scissors Hamiltonian within the velocity
gauge, which is not simply the usual strategy illustrated by
Eq. �26�.20

Using Eq. �A1�, we rewrite Eq. �25� as

�ab�− �;�� =
e2

�
� d3k

8�3 

m�n

fnmrnm
a rmn

b

�mn
S − � − i�

,

which is identical to the length gauge result for the scissored
Hamiltonian.9 Again, for the unscissored Hamiltonian one
gets,21

�unscissored
ab �− �;�� =

e2

�
� d3k

8�3 

m�n

fnmrnm
a rmn

b

�mn − � − i�
,

and as discussed by Nastos et al.,9 in the length gauge the
unscissored linear susceptibility can be “scissored” by sim-
ply shifting �nm→�nm

S and keeping the same matrix ele-
ments rnm. Thus, as in the velocity gauge, the scissored linear
response is simply rigidly shifted in energy form its LDA
result, keeping the same line shape. We remark that this con-
stitutes a direct analytical proof of gauge invariance for the
linear response. For the nonlinear response, we have not
been able to construct any such analytical proof. However,
we can at least provide a check on the gauge invariance
through a numerical calculation. To that end we need expres-
sions for the second-order response in the velocity and length
gauges, and we now turn to the first of these.

2. Nonlinear response

Using the results of Sec. II and the previous subsection,
we find that to second order in A the density matrix is given
by

�̃mn
�2��t� = −

i

�
�

−�

t

dt��H̃I,1�t��, �̃�1��t���mn

−
i

�
�

−�

t

dt��H̃I,2�t��, �̃�0��t���mn

=
e2

�2c2� 

���n�

fn�vm�
,bv�n

,c

��n
S − �̃

− 

���m�

f�mvm�
,cv�n

,b

�m�
S − �̃

+
i

2
fnmFmn

bc �Ab���Ac���
�mn

S − 2�̃
e−i2�̃tei�mn

S t

= �mn
�2�ei�mn

S t,

where, as in the linear response, only the positive frequency
terms are used. The Fmn

ab term is obtained in the appendix in
Eq. �A7�. The macroscopic current density can be calculated
through Eq. �15�, where we take each term separately

1

�
Tr�j0

a��2�� = e� d3k

8�3

mn

vnm
,a�nm

�2�

=
e3

�2c2�� d3k

8�3

mn

vnm
,a

�mn
S − 2�̃

�� 

���n�

fn�vm�
,bv�n

,c

��n
S − �̃

− 

���m�

f�mvm�
,cv�n

,b

�m�
S − �̃

�
+

i

2
� d3k

8�3 

m�n

fnmvnm
,aFmn

bc

�mn
S − 2�̃

�
�Ab���Ac���e−i2�̃t, �27�

1

�
Tr�j1

a��1�� =
e2

cme

1

�
Tr���1��Aa���e−i�̃t

+
ie2

�c

1

�
Tr�Fab��1��Ab���e−i�̃t

=
ie3

�2c2� d3k

8�3 

m�n

fnm

Fnm
ab vmn

,c

�mn
S − �̃

Ab���Ac���e−i2�̃t,

�28�

since Tr���1��=0 �see Eq. �16��, and finally

1

�
Tr�j2

a��0�� = −
e3

2�2c2� d3k

8�3

mn

�mn
�0��ra,�rb,vS,c��nm

�Ab���Ac���e−i2�̃t

= −
e3

2�2c2� d3k

8�3

n

fn�ra,Fbc�nn

�Ab���Ac���e−i2�̃t

= −
e3

2�2c2� d3k

8�3

�

n

fn�rnm
a Fmn

bc − Fnm
bc rmn

a + i
�

�kaFe,nn
bc �

�Ab���Ac���e−i2�̃t, �29�

where we used the expression for �ra ,Fbc�nn derived in
the appendix. Again employing time-reversal symmetry, we
can take rnm

a �−k�=rmn
a �k�, rmn;k�k�=−rnm;k�−k�, Fnm

bc �−k�
=Fmn

bc �k�, and Fnm
bc�

�k�=−Fmn
bc �k�. If we add the k and the −k

contributions in Eq. �29�, we get a perfect cancellation of the
terms within the parenthesis, and so the contribution from
Tr�j2

a��0�� vanishes.
Using �J��2�=dP�2� /dt for the second-harmonic response,

we get P�2��2��= �i /2�̃��J�2��2���, and from Eq. �5�, Eqs.
�27� and �28� we find
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�abc�− 2�;�,�� =
e3

2�2�̃3�− i� d3k

8�3

mn

vnm
,avm�

,bv�n
,c�

�mn
S − 2�̃

� 

���n�

fn�

��n
S − �̃

− 

���m�

f�m

�m�
S − �̃

�
+

1

2
� d3k

8�3 

m�n

fnm�vnm
,aFmn

bc �

�mn
S − 2�̃

+ 2
Fnm

ab vmn
,c�

�mn
S − �̃

�� ,

where  � implies the symmetrization of the Cartesian indices bc, i.e., ubsc�= �ubsc+ucsb� /2. We take half of this expression
and add to it the corresponding expression with k replaced by −k in the integrand; this of course give a result equivalent to our
first expression, and using time-reversal symmetry we simplify it to yield

�abc�− 2�;�,�� =
e3

2�2�̃3�� d3k

8�3 

�mn���

Im�vnm
,avm�

,bv�n
,c��

�mn
S − 2�̃

� fn�

��n
S − �̃

−
f�m

�m�
S − �̃

�
+

1

2
� d3k

8�3 

m�n

fnm�Re�vnm
,aFmn

bc ��

�mn
S − 2�̃

+ 2
Re�Fnm

ab vmn
,c��

�mn
S − �̃

�� . �30�

Following Ghahramani et al.,3 we use partial fractions to write the energy denominator of the first term on the right-hand side
of Eq. �30� as

A

�̃3 +
B

�̃2 +
C

�̃
+ F , �31�

where the odd terms in �, A, and C, can be shown to give zero contribution.3 For the second term on the right-hand side of
Eq. �30� we expand the denominators in partial fractions to obtain

1

�̃3��mn
S − �̃�

=
1

�̃��mn
S �3 +

1

�̃3�mn
S +

1

�̃2��mn
S �2 +

1

��mn
S �3��mn

S − �̃�
, �32�

and

1

�̃3��mn
S − 2�̃�

=
4

�̃��mn
S �3 +

1

�̃3�mn
S +

2

�̃2��mn
S �2 +

8

��mn
S �3��mn

S − 2�̃�
. �33�

Using time-reversal symmetry and simple manipulation of the band indices, we can show that all the odd terms in �̃ coming
from Eqs. �32� and �33� give zero contribution. Collecting the B and F terms of Eq. �31�, and the nonzero terms of Eqs. �32�
and �33� we obtain

�abc�− 2�;�,�� =
e3

2�2� d3k

8�3� 

n�m���

� Im�vmn
,avn�

,bv�m
,c��

�nm
S − 2��m

S −
Im�vn�

,av�m
,bvmn

,c��
��n

S − 2��m
S � fm�

���m
S �3���m

S − �̃�

− 16 

��m�n�

fmn

��m
S − 2�nm

S

Im�vm�
,av�n

,bvnm
,c��

���m
S �3���m

S − 2�̃�
− 16 


m���n�

f�n

��m
S − 2��n

S

Im�vm�
,av�n

,bvnm
,c��

���m
S �3���m

S − 2�̃�

+ 

m�n

fnm

��mn
S �3�4

Re�vnm
,aFmn

bc ��

�mn
S − 2�̃

+
Re�Fnm

ab vmn
,c��

�mn
S − �̃

�� �34�

as the nondivergent contribution, to which the divergent term

�D
abc�− 2�;�,��

=
e3

2�2�̃2� d3k

8�3� 

�mn���

b�mn Im�vnm
,avm�

,bv�n
,c��

+ 

m�n

fnm

��mn
S �2 �Re�vnm

,aFmn
bc �� + Re�Fnm

ab vmn
,c����

must be added, where

b�mn =
fm�

�nm
S ��m

S � 2

�nm
S +

1

��m
S � +

fn�

�nm
S �n�

S � 2

�nm
S +

1

�n�
S � ,

comes from the B term of Eq. �31�. Following the steps of
Ghahramani et al.,3 we can show that for a clean, cold semi-
conductor �D

abc�−2� ;� ,��=0.22

Finally, we insert the explicit values for the fn factors and
take the limit of �→0 in Eq. �34� to find
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Im��v
abc�− 2�;�,��� =

��e�3

2�2 � d3k

8�3�

vc

16

��cv
S �3�


c�

Im�vvc
,avcc�

,bvc�v
,c��

�cv
S − 2�c�v

S − 

v�

Im�vvc
,avcv�

,bvv�v
,c��

�cv
S − 2�cv�

S ����cv
S − 2��

+ 

�vc���

1

��cv
S �3� Im�v�c

,avcv
,bvv�

,c��
�c�

S − 2�cv
S −

Im�vv�
,av�c

,bvcv
,c��

��v
S − 2�cv

S ����cv
S − ��

− 

vc

1

��cv
S �3 �4 Re�vvc

,aFcv
bc�����cv

S − 2�� + Re�Fvc
abvcv

,c�����cv
S − ���� , �35�

as the imaginary part of the nonlinear SHG susceptibility for the scissored Hamiltonian within the velocity-gauge formalism,
where we have used the subscript v to denote it. The Re��v

abc�−2� ;� ,��� is obtained through the Kramers-Kroning transfor-
mation. Taking 
=0 we get

Im��v,
=0
abc �− 2�;�,��� =

��e�3

2�2 � d3k

8�3�

vc

16

��cv�3�

c�

Im�vvc
a vcc�

b vc�v
c ��

�cv − 2�c�v
− 


v�

Im�vvc
a vcv�

b vv�v
c ��

�cv − 2�cv�
����cv − 2��

+ 

�vc���

1

��cv�3� Im�v�c
a vcv

b vv�
c ��

�c� − 2�cv
−

Im�vv�
a v�c

b vcv
c ��

��v − 2�cv
����cv − ��� , �36�

since Fnm
ab �
=0=0 �see the appendix�. This equation is identical to one obtained earlier for the unscissored Hamiltonian.3

However, as far as we know the expression for Im��abc�−2� ;� ,��� given in Eq. �35�, and the last two terms proportional to

 through Fnm

ab have been neglected in the literature until now. As we show below �Sec. III�, these terms are crucial for the
gauge invariance of the second-order response within the scissored Hamiltonian.

Indeed, in the past the scissors implementation within the velocity gauge has been performed by taking Eq. �36� and simply
replacing �mn by �mn

S and vmn with vmn
 , as the usual scissoring of the linear response would �wrongly� suggest. This strategy

leads to

Im��v,wrong
abc �− 2�;�,��� =

��e�3

2�2 � d3k

8�3�

vc

16

��cv
S �3�


c�

Im�vvc
,avcc�

,bvc�v
,c��

�cv
S − 2�c�v

S − 

v�

Im�vvc
,avcv�

,bvv�v
,c��

�cv
S − 2�cv�

S ����cv
S − 2��

+ 

�vc���

1

��cv
S �3� Im�v�c

,avcv
,bvv�

,c��
�c�

S − 2�cv
S −

Im�vv�
,av�c

,bvcv
,c��

��v
S − 2�cv

S ����cv
S − ��� , �37�

a wrong result, since we are missing the important contribu-
tion from Fmn

ab given in Eq. �35�. It is obvious that the coin-
cidence that takes place in the linear response does not arise
here at all, since if we substitute vnm

 = ��nm
S /�nm�vnm in Eq.

�37� we do not get the last two terms on the right-hand side
of Eq. �35�!

C. Length gauge formalism

Within this gauge, the interaction Hamiltonian is given by

HI�t� = − er · E�t� . �38�

As discussed in Nastos et al.,9 the length-gauge formalism
for the scissored Hamiltonian can be easily worked out by
simply using the unscissored Hamiltonian for the unper-
turbed system with −er ·E�t� as the interaction, and then at
the end of the calculation only replacing �nm by �nm

S to ob-
tain the scissored results for any susceptibility expression,
whether linear or nonlinear. Indeed, rnm and rnm;k, as stated
before, are calculated within the unscissored �LDA� Hamil-

tonian. We use H�t�=H0−er ·E�t� as the time-dependent
Hamiltonian, that from Eq. �4� gives ṙ=v=p /me.

Taking the matrix elements of Eq. �2� but now with the
HI�t� of Eq. �38�, we obtain ��̃L

�1��t��nm=Bnm
b Eb���ei��nm−�̃�t,

with

Bnm
b =

e

�

fmnrnm
b

�nm − �̃
,

and

��̃L
�2��t��nm =

e

i�

1

�nm − 2�̃�i

�

�rn�
b B�m

c − Bn�
c r�m

b �

− �Bnm
c �;kb�Eb���Ec���ei��nm−2�̃�t.

We have used the fact that for a cold semiconductor
�fn /�k=0 and thus the intraband contribution to the linear
term vanishes identically. From Eq. �3� we can obtain5
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�L,e
abc�− 2�;�,��

=
e3

�2� d3k

8�3� 

��n�m�

2fnm

�mn − 2�̃
+ 


m���n�

f�n

��n − �̃

+ 

n���m�

fm�

�m� − �̃
� rnm

a rm�
b r�n

c �
��n − �m�

,

as the contribution from interband processes only, and

�L,i
abc�− 2�;�,��

=
ie3

�2� d3k

8�3 

m�n

fnm� 2rnm
a rmn;kc

b �

�mn��mn − 2�̃�
+

rnm;kc
a rmn

b �

�mn��mn − �̃�

+
1

�mn
2 � 1

�mn − �̃
−

4

�mn − 2�̃
�rnm

a rmn
b Vmn

c �

−
rnm;ka

b rmn
c �

2�mn��mn − �̃�
� ,

as the contribution from intraband processes only, where
rnm;ka

b is the generalized derivative of r, and is explicitly
given by,5

rnm;ka
b =

rnm
a Vmn

b + rnm
b Vmn

a

�nm
+

i

�nm



�

���mrn�
a r�m

b

− �n�rn�
b r�m

a � �n � m� , �39�

where Vnm
a = �pnn

a − pmm
a � /me is the difference between the

electron velocity at bands n and m, and the sum over � is
over all the valence and conduction states.

We notice that the above expressions for �L,e,i
abc �

−2� ;� ,�� are divergence free at �=0, that both satisfy the
intrinsic permutation symmetry �L,e,i

abc �−2� ;� ,��=�L,e,i
acb �

−2� ;� ,��, and finally that the full susceptibility �L
abc�

−2� ;� ,��=�L,e
abc�−2� ;� ,��+�L,i

abc�−2� ;� ,��, where the
subscript L denotes the length gauge. Again using time-
reversal symmetry, we can take rmn�k�=rnm�−k� and
rmn;k�k�=−rnm;k�−k�, along with the hermiticity condition
rmn=rnm

� , which implies that rmn;k=rnm;k
� , and arrive at the

following results for the imaginary parts of �i,e
abc:

Im��L,e
abc� =

��e�3

�2 � d3k

8�3 

�vc���

�2 Re�rvc
a rc�

b r�v
c ��

�c�
S − ��v

S ���cv
S − 2��

+ �Re�rv�
a r�c

b rcv
c ��

�cv
S − ��c

S +
Re�r�c

a rcv
b rv�

c ��
�v�

S − �cv
S ����cv

S − ���
�40�

and

Im��L,i
abc� =

��e�3

�2 � d3k

8�3

vc
��2 Im�rvc

a rcv;kc
b ��

�cv
S

−
4 Im�rvc

a rcv
b Vcv

c ��

��S�cv
2 ����cv

S − 2��

+ � Im�rvc;kc
a rcv

b ��

�cv
S +

Im�rvc
a rcv

b Vcv
c ��

��S�cv
2

−
Im�rvc;ka

b rcv
c ��

2�cv
S ����cv

S − ��� , �41�

where we have taken �nm→�nm
S so the above expressions

are valid for the scissors Hamiltonian, HS=H0+S�r ,p�
−er ·E. Recall that both rnm and rnm;k are calculated with the
unscissored �Kohn-Sham� Hamiltonian.9 The last two equa-
tions give the nonlinear SHG susceptibility within the length
gauge for the scissored Hamiltonian. Comparing Eqs. �40�
and �41� with the velocity gauge result of Eq. �35� it is clear
that, unlike for linear response, there is no obvious analytical
scheme to prove that both gauges give the same result. In the
following section we present numerical results to prove the
expected gauge invariance.

III. RESULTS

In this section we evaluate the velocity- and length-gauge
expressions �v,L

abc�−2� ;� ,�� for GaAs. In order to calculate
the energies, wave functions and matrix elements we employ
the “augmented plane wave plus local orbital method” using
the WIEN2K code.23 This all-electron code uses the full local-
crystal potential, i.e., V�r�, just as required by our assump-
tions of Eq. �6�, and thus the commutator �r ,H�= i�ṙ is cor-
rectly calculated for the local V�r�. We also show results
calculated through the use of pseudopotentials with the AB-

INIT plane-wave code.24 The pseudopotentials are nonlocal
functions expressible as VNL�r ,p�,25 just as is the scissor
Hamiltonian S�r ,p�. To really complete the calculation one
would have to do the corresponding manipulations including
VNL�r ,p� in the Hamiltonian HS �Eq. �9��, and terms would
arise in the linear and nonlinear susceptibility expressions.
For instance, the term i�vNL= �r ,VNL�r ,p�� should be added
to the velocity operator v given by Eq. �13�. This is a re-
search project for the future. Here we use the comparison of
the all-electron and the pseudopotential calculation to get a
sense of the size of error involved by neglecting the nonlocal
contributions coming from VNL�r ,p�. The linear-response
counterpart of these calculations are discussed in Pulci et
al.26 and Mendoza et al.27

Spin-orbit effects, local field effects, and the conse-
quences of the electron-hole attraction8 on the SHG process
are neglected. Although all these effects are important for the
optical response of a semiconductor, their calculation is still
an open question and a numerical challenge that ought to be
pursued. However this endeavor is beyond the scope of this
paper. The band gap of GaAs is taken to be its experimental
value of 1.52 eV. We find converged spectra for all the quan-
tities of interest in this work, and the most important param-
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eters are shown in the Table I. All the spectra are calculated
with an energy smearing of 0.15 eV. The linear analytic tet-
rahedron method is used to evaluate the Brillouin zone inte-
grals for the imaginary part of the spectra, where special care
was taken to examine the double resonances.9 Double reso-
nances occur if for a given frequency � there can be resonant
transitions at both frequencies � and 2�, that is, if there is a
region in the Brillouin zone such that �cv�k�=2�c�v�k�
=2�. For these k points the perturbation theory used to cal-
culate the spectrum breaks down, since there is real popula-
tion excited, which in a correct calculation must be taken
into account. These points introduce sharp spikes in the spec-
trum that can, in principle, affect the low-frequency results,
since the response at frequencies below the band gap is com-
puted from the Kramers-Kronig relation. However, in agree-
ment with Nastos et al.,9 we find here that the double reso-
nances affect the low-frequency results by less than 2%.

In Fig. 1 we show the imaginary part of �v,L
xyz�−2� ;� ,��

with no scissors correction �
=0�, calculated with the all-
electron scheme.28 As expected, Im��v,L

xyz��−2� ;� ,�� is zero
below the gap, and above it we see a series of positive and
negative peaks that can be related to electronic transitions.
What is more relevant for this paper is that in the top panel
we have plotted both �v

xyz�−2� ;� ,�� and �L
xyz�−2� ;� ,��;

they seem identical, as they must be, since gauge invariance
must be fulfilled. In the bottom panel of Fig. 1, we show
Im��L

xyz�−2� ;� ,��−�v
xyz�−2� ;� ,���, which confirms that

the results for the unscissored Im��v,L
abc�−2� ;� ,��� agree to

within numerical accuracy �about 1 part in approximately
105�, as would be expected from gauge invariance.

In Fig. 2 we show the imaginary part of �v,L
xyz�−2� ;� ,��

with a scissors shift of 
=1.243 eV, calculated with
the all-electron scheme. In the top panel we compare
the velocity-gauge calculation �i.e., Im��v

xyz�−2� ;� ,���
of Eq. �35�� with a calculation where we neglect the
contributions coming from the scissors term, �i.e.,
Im��v,wrong

xyz �−2� ;� ,��� of Eq. �37��; we see that the results
disagree. In the middle panel we show Im��L

xyz�−2� ;� ,���

and in the bottom panel we show Im��L
xyz�−2� ;� ,��

−�v
xyz�−2� ;� ,���, where it is clear that, as in the unscis-

sored case, gauge invariance with the scissored Hamiltonian
is confirmed within numerical accuracy. We stress that this
fulfillment of gauge invariance is due to the terms of Eq. �35�
proportional to Fmn

ab which in turn depends on the commuta-
tor �r ,vS� with vS=−�i /���r ,S�r ,p��. Thus, neglecting the
effect of the scissors operator S�r ,p� in the usual perturba-
tion procedure would lead, in general, to the wrong result for
nonlinear susceptibility tensors within the velocity-gauge ap-
proach.

As explained above, we have also used a pseudopotential
method to calculate the SHG susceptibility tensor. In this
way, we can estimate the error that one makes when calcu-
lating the matrix elements of the electron’s momentum op-
erator through the use of pseudopotentials, the error arising
from the nonlocal part of the pseudopotential in the
commutators.26,27 In Fig. 3 we show the absolute value of
��L

xyz�−2� ;� ,���= ��v
xyz�−2� ;� ,���	��xyz�−2� ;� ,��� with

the scissors correction, where 
=1.051 eV for the pseudo-
potential code and 
=1.243 eV for the all-electron code. We
notice that there is a difference between the results of the
value of the static limit of ��xyz�−2� ;� ,��� by approxi-
mately 36.8 pm/V; we obtain a static value of ��xyz�0;0 ,0��
=135.6 pm /V for the pseudopotential calculation, and
��xyz�0;0 ,0��=172.4 pm /V, for the all-electron calculation.
These quantities are close to the theoretical values of other
studies,9 and to the most recent experimental value close to

TABLE I. The most important parameters used in the all-
electron and pseudopotential schemes for GaAs. The empty entries
are not relevant for the corresponding code. The k points are for the
irreducible part of the first Brillouin zone, and RMTKMAX is a prod-
uct of the “muffin-tin” radius R and the maximum value for the
plane-wave vectors K.23

Parameter �GaAs� All-electron Pseudopotential

Lattice parameter 10.684a0 10.684a0

k points 27720 27720

Unscissored band gap 0.277 eV 0.469 eV

Scissors 1.243 eV 1.051 eV

Valence bands 14 �includes semicore� 4

Conduction bands 7 7

Exchange correlation energy LDA LDA

Energy convergence limit 0.001 Ry

Cut-off energy 20 Ha

RMTKMAX 7.0
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FIG. 1. �a� Im��v,L
xyz�−2� ;� ,��� for the length-gauge and

the velocity-gauge schemes, using the all-electron approach
and for zero scissors correction, 
=0. �b� Im��L

xyz�−2� ;� ,��
−�v

xyz�−2� ;� ,��� where very tiny differences between the two
schemes are seen.
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the static limit of 172 pm/V at 0.118 eV.29 We see that the
corrections due to the nonlocal nature of the pseudopoten-
tials affect not only the strength of the spectrum but also its
line shape, as some resonances are energy shifted from one
calculation to the other. The overall intensity correction is
smaller than �25%, and we may conclude that the pseudo-
potential calculation does a reasonable job for the nonlinear
response. Indeed, this seems to be the case for the linear
optical response as well.27

Although the main objective of this paper is to show how
the nonlocal scissors correction must be included in the lin-
eal and nonlineal optical responses, and how including it
fulfills gauge invariance, as shown in Fig. 2, we present for
reference the comparison of the theoretical results with the
experimental results. In Fig. 4 we show the experimental

spectrum measured by Bergfeld and Daum,30 where in order
to have a better comparison of theory and experiment, the
energy scale of the theoretical results has been linearly res-
caled as proposed by them.31 Our results for the all-electron
calculation show good agreement with the experimental val-
ues up to 4.3 eV. Above 4.3 eV the theoretical signal dis-
agrees although it shows a similar line shape that is blue-
shifted in energy with respect to the experimental signal. We
have checked that the results obtained in Refs. 6–10 qualita-
tively show a similar comparison with the experiment.

IV. CONCLUSIONS

We have presented a comparison for the calculation of the
second-harmonic susceptibility tensor using two well-known
approaches, often colloquially referred to as using the veloc-
ity gauge and the “length gauge.” We have done this for two
Hamiltonians, the usual LDA Hamiltonian and the scissored
Hamiltonian, where a rigid energy shift in the conduction
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FIG. 2. �Color online� �a� Im��v
xyz�−2� ;� ,���

and Im��v,wrong
xyz �−2� ;� ,��� for the velocity gauge. �b�

Im��L
xyz�−2� ;� ,��� for the longitudinal gauge. �c�

Im��L
xyz�−2� ;� ,��−�v

xyz�−2� ;� ,��� where very tiny differences
are seen. The spectra is evaluated within the all-electron approach
with 
=1.243 eV.
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bands is introduced so the experimental �or GW� energy gap
is obtained. We derived a expression for the velocity-gauge
susceptibility �v

abc�−2� ;� ,��, where correction terms re-
lated to the nonlocal nature of the scissors operator were
obtained. These terms, not considered before in the literature,
are crucial in order to obtain gauge invariance for a calcula-
tion made with the scissored Hamiltonian. For the unscis-
sored Hamiltonian, gauge invariance is obtained with the
usual �abc�−2� ;� ,�� expression for the velocity and length
gauges.

We have presented our numerical results for GaAs using a
DFT-LDA ab initio calculation, with the augmented plane
wave plus local orbital all-electron method as given by
WIEN2K,23 and a plane-wave pseudopotential scheme given
by the ABINIT code.24 Besides providing a numerical demon-
stration of gauge invariance for the unscissored and the scis-
sored Hamiltonian calculations, this indicates the kind and
size of error that the neglect of the nonlocal nature of the
pseudopotentials can be expected to produce in the calcula-
tion of �v,L

abc�−2� ;� ,��; it affects not only the strength of the
spectrum but also its line shape. Our results compare quali-
tatively well with the previous work of other authors, and, in
particular, with the experimental results. However, the details
of each approach show that the calculation of the nonlinear
response in a nontrivial matter, and better calculations of
�abc�−2� ;� ,�� using more sophisticated means are still to
be sought.
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APPENDIX

In this appendix we derive several results related to the
scissors operator S�r ,p� of Eq. �7�. First we sketch some
well-known results, for which we follow Aversa and Sipe,5

and Blount.32 We write the position operator of the electron,
r, as the sum of its interband part re and intraband part ri,
r=re+ri. The matrix elements of re are simply given by5

�nk�re�mk�� = ��k − k���re�nm → rnm

=
pnm

ime�nm
=

vnm

i�nm
n � m , �A1�

where the canonical momentum matrix elements are calcu-
lated according to

�nk�p�mk�� = ��k − k��pnm

= ��k − k��� d3r�nk
� �r��− i����mk�r� ,

and vnm=pnm /me. Instead of needing the matrix elements of
ri one actually uses its following property:5

�nk��ri,O��mk�� = i��k − k���Onm�;k, �A2�

where O is an operator and �Onm�;k is the generalized deriva-
tive of its matrix elements, i.e., Eq. �39� for rnm;ka

b . As dis-
cussed by Nastos et al.,9 both rnm �Eq. �A1��, and its gener-
alized derivative rnm;k �Eq. �39��, are evaluated using the
unscissored energies.

Now we establish Eq. �23�. We take matrix elements of
Eq. �12� and use Eq. �7� to write

vnm
S = −

i

�
�nk��rS�r,p� − S�r,p�r��mk�

= − i
��1 − fm� − �1 − fn���nk�r�mk�

= i
fmnrnm =

fmn

me�nm
pnm, �A3�

where we used Eq. �A1� since the factor, fmn, yields n�m.
Then the matrix elements of Eq. �13� reduce to

vnm
 = �1 +


fmn

�nm
��nk�

p

me
�mk� = ��nm + 
fmn

�nm
�vnm

= ��n
S − �m

S

�nm
�vnm =

�nm
S

�nm
vnm �n � m� , �A4�

where we used Eq. �8�; thus Eq. �A4� is Eq. �23�.
In order to prove Eq. �21�, we start with the matrix ele-

ments of Eq. �18�, which we write as

Fnm
ab = �nk���ri

a,vS,b� + �re
a,vS,b���mk� .

The interband part is

�nk��re
a,vS,b��mk� 	 Fe,nm

ab = 

�

�re,n�
a v�m

S,b − vn�
S,bre,�m

a �

= i
 

���mn�

�fm�rn�
a r�m

b − f�nrn�
b r�m

a � ,

�A5�

where we used Eqs. �A1� and �A3�. For the intraband part we
use the result of Eqs. �A2� and �A3� to simply write

�nk��ri
a,vS,b��mk� 	 Fi,nm

ab = ivnm;ka
S,b = 
fnmrnm;ka

b . �A6�

From Eqs. �A5� and �A6� we find

Fnm
ab = i
 


���mn�
�fm�rn�

a r�m
b − f�nrn�

b r�m
a � + 
fnmrnm;ka

b .

�A7�

We see that for n=m the intraband contribution Fi,nn
ab =0,

whereas the interband part reduces to

Fnn
ab = Fe,nn

ab = i
 

m�n

fnm�rnm
a rmn

b + rnm
b rmn

a � , �A8�

giving Eq. �21�.
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Now we take matrix elements of �ra ,Fbc�, separating ra

=ri
a+re

a. Then the interband part gives

�re
a,Fbc�nn = 


m�n

�rnm
a Fmn

bc − Fnm
bc rmn

a � , �A9�

while the intraband part gives

�ri
a,Fbc�nn = iFnn;a

bc = i
�

�kaFnn
bc = i

�

�kaFe,nn
bc , �A10�

where we used Eq. �A8�. Then Eqs. �A9� and �A10� are used
to obtain Eq. �29�.

We derive Eq. �24�. Using Eq. �A4�, �mn
S =�mn− fmn
,

Eqs. �21� and �A1�, Eq. �19� reduces to

�ab =
e2

�
� d3k

8�3 

m�n

fn�mn
S vnm

a vmn
b + vmn

a vnm
b

�mn
2 −

e2n

m
�ab

=
e2

�
� d3k

8�3 

m�n

fn�mn
vnm

a vmn
b + vmn

a vnm
b

�mn
2 −

e2n

m
�ab −

e2


�
� d3k

8�3 

m�n

fnfmn
vnm

a vmn
b + vmn

a vnm
b

�mn
2

= − e2� d3k

8�3

n

fn��ab

m
− 


m�n

vnm
a vmn

b + vmn
a vnm

b

��mn
� +

e2


�
� d3k

8�3

n

fn 

m�n

fnm�rnm
a rmn

b + rmn
a rnm

b �

= − e2� d3k

8�3

n

fn� 1

mn
��ab

−
ie2

�
� d3k

8�3

n

fnFnn
ab, �A11�

where

� 1

mn
��ab

=
�ab

me
− 


m�n

vnm
a vmn

b + vmn
a vnm

b

��mn
�A12�

is the effective mass tensor. Identifying the second term
on the right-hand side of Eq. �A11� as −�ab �see Eq. �20��,
leads to

�ab + �ab

= − e2� d3k

8�3

n

fn� 1

mn
��ab

.

Using above in Eq. �22� gives Eq. �24�.
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